
Integrating HLA, SCORM, and Instruction: Three Prototypes

Philip V. W. Dodds
ADL Chief Architect

J. D. Fletcher
Institute for Defense Analyses

ABSTRACT: Examination of three ADL prototypes, two of which integrate the High Level Architecture (HLA), the
Sharable Content Object Reference Model (SCORM), and training applications suggests that four basic components
are needed: a communications link, access to simulation state data, a means to map student performance to simulation
state data, and a means to map simulation states and student performance to learning objectives. In two of the
prototypes, the HLA Run Time Interface (RTI) provides a communications link between an HLA compliant simulation
and a SCORM Learning Management System (LMS). The third prototype uses a commercial off-the-shelf game
platform for this link. All three prototypes use SCORM content objects to transmit simulation and student state data to
an LMS, which then identifies simulation scenarios needed to achieve student learning objectives. A more standardized
object-oriented approach with a reusable HLA-SCORM interface object could be developed to both encapsulate
complex data constructs and transmit state data between the LMS and the simulation environment.

1. Simulation and Advanced Distributed

Learning
However carefully we plan our military operations,
something, in fact many things, will go wrong.
Exigencies inevitably arise that we did not anticipate, for
which we were not prepared, and to which we must
respond as, literally, a matter of life and death. As a
consequence, our training simulations must reflect the
fluidity of modern operational environments, adapting on
demand and in real time to the needs and responses of
their users. They also must be accessible as needed in
garrison, in transit to operational trouble spots, and in the
field. In short they need to be available anytime,
anywhere.

These requirements for adaptability and accessibility
match the well-noted goals of the Advanced Distributed
Learning (ADL) initiative [1]. These goals are to ensure
the availability of education, training, and performance
aiding materials that are tailored to user requirements and
accessible anytime, anywhere. Support for rapidly
adaptive simulation is, then, a primary component of the
ADL initiative. However, these simulations have to start
somewhere, with something. In ADL, they begin with
sharable learning objects.

The ADL initiative is preparing for a future in which
communication networks and personal delivery devices
are pervasive, inexpensive, and effectively transparent to
users through ease of use, expanded bandwidth, and
portability. It will establish knowledge libraries, or
repositories, where learning ‘objects’ may be accumulated
and cataloged for broad distribution and use. Because of

their enhanced accessibility, these objects will be ready
for assembly on demand and in real time into instructional
and performance aiding materials that are tailored to the
capabilities, intentions, and learning state of each
individual or group of individuals needing them.

2. Learning Objects and SCORM
To date much of the ADL effort has been devoted to the
specification of instructional objects that will populate
learning libraries and other Web-available repositories.
These objects are separated from context-specific run-
time constraints and proprietary systems so that they can
be incorporated into other applications. They have
common interfaces and data exchange formats. They are
accessible so that they can be indexed and readily found
or “discovered”; interoperable so that they operate across
a wide variety of hardware, operating systems, and Web
browsers; durable so that they do not require modification
as versions of the underlying software systems change;
and reusable so that they can be adapted and used by
many different development tools.

Specifications for these learning objects are provided by
the Sharable Content Object Reference Model (SCORM).
SCORM assumes a run-time environment in which these
objects will be managed by middle-ware Learning
Management Systems (LMSs). It is intended to ensure
that any conforming LMS will be able to access
conforming repositories of learning objects that have been
authored by different developers using different tools,
locate needed objects and launch them in executable

applications, and provide data exchange among the
objects [2]. SCORM has evolved through several
versions, the most current of which (SCORM 2004) can
be found at http://www.adlnet.org.

Many technicians, software engineers, instruction
designers, and cognitive researchers from all economic
sectors in the Americas, Europe, and Asia have
participated in the development of SCORM. The task of
specifying and developing sharable learning objects has
become a global effort. The primary contribution of the
ADL initiative has been to orchestrate this effort and
document its results.

3. SCORM and HLA
If SCORM is to support the agile simulations envisioned
by the ADL initiative, it must be harmonized with High
Level Architecture (HLA) [3]. The bridge to be built
between simulation, with HLA, on one hand, and ADL,
with its SCORM specifications, on the other is both a
technical and instructional challenge. While similar at a
high level, HLA and SCORM are very different
architectures. This difference is appropriate because they
address different domains. HLA is intended to enable a
multiplicity of processes to connect and transfer
information, often in real time. SCORM is intended to
support directed learning experiences that develop
specific human competencies. SCORM can provide the
means to track a learner’s mastery in order to devise an
appropriate program of instruction. HLA can provide the
means to deliver simple or complex simulation
experiences once such a program of instruction has been
devised.

The challenge in blending these architectures is
connecting the “teaching” and “doing” parts of learning in
one seamless (to the learner) environment. It requires
mapping specific skills and competencies to demonstrated
results in a simulation environment.

SCORM, therefore, is key to the development, packaging,
aggregation, and sequencing of instructional material as
objects. Its specifications define how these objects can
be tagged for later discovery in terms of descriptive
characteristics such as targeted learning objectives.
Simulations could similarly be developed that map to the
same vocabulary of descriptors so that a learner, program
developer, or computer algorithm could discover both
instruction and simulation objects and retrieve them on
demand. This paper discusses three prototype efforts that
incorporate both HLA and SCORM to discover, retrieve,
and present contextually relevant objects for instruction

and simulation and then track a learner’s performance and
progress toward attaining instructional objectives.

4. Three Prototype Cases
Three prototypes are now in development that connect a
LMS to a simulation platform such that data may be
exchanged between them. Two of the three prototypes
connect to HLA-based simulation; the third uses a
commercial off the shelf 3D game engine. All three
examine methods for exchanging learner performance
information from the simulation environment to the LMS
so that the LMS can provide appropriate and relevant
instruction. These prototypes build upon discussions of
similar concepts between the Defense Modeling and
Simulation Office (DMSO) and ADL as well as
prototypes sponsored by DMSO in 2002.

4.1 Case 1: The Boeing Company’s SCORM/HLA
prototype

Early in the development of SCORM’s sequencing and
navigation work, ADL collaborated with Boeing to
develop instructional use cases that would inform the new
content sequencing technical specification then in
development. Their use case prescribed specific rules and
sequencing behaviors and described the launching of a
simulation and the evaluation of learner performance that
would subsequently affect the instructional path. During
the development of the sequencing specification, it was
decided that more research was required to determine how
to integrate simulations in a learning management system.
The prototype described here was developed as a result of
this work.

The lead Engineer and Principal Investigator for R&D at
Boeing’s Training Software Systems in St. Louis created
a prototype that links an LMS to an HLA-based
simulation. This was an internal Boeing research project
that leveraged Boeing’s existing simulation and training
capabilities, linking the two for the first time.

A “lesson” was defined as a collection of sharable content
objects (SCOs), each addressing one facet of an
instrument landing system (ILS). Another SCO acts as a
“virtual flight instructor” who presents a specific scenario
to the learner. The system then initializes a flight
simulation that fits the scenario. The learner flies the
approach while data from the simulation is fed back to the
learning environment. During the simulation, the SCO
(the virtual flight instructor) provides feedback such as
“you are a little too high”. When the landing is complete,
end-state data is returned to the LMS for display to the
learner and for the LMS to use in determining the
student’s mastery of various learning objectives.

Figure 4.1. Instructional “set up” prior to launching simulation

Figure 4.2. The simulation feeding state data back to the LMS

In general, the sequence followed is:

• The LMS determines the next SCO to present

• The LMS launches an ADL-conformant SCO

• The SCO presents lesson objective and lesson
materials

• The SCO sends an HLA packet to initialize the
simulation

• The Student lands the aircraft in the simulation

• The simulation sends aircraft information and student
actions to the SCO using HLA

• The SCO evaluates student actions, displays feedback
to student, sends information to the LMS using
SCORM, and sends override commands to the
simulation using the HLA provided Run Time
Interface (RTI).

• The LMS remediates if necessary or determines next
SCO…

Figure 4.1 shows this sequence in action as the SCO is
used to present the scenario tasking to the student. Figure
4.2 shows the feedback provided back to the student as
aircraft and student state information is carried back and
forth between the ongoing simulation and the LMS by a

SCO using an HLA RTI to effect the communication.
Figure 4.3 shows some of the information exchanged
between the simulation and the LMS. Finally, Figure 4.4
shows the mapping between simulation state data and
LMS data elements performed by this system.

The Boeing prototype illustrates how simulation state data
can be interpreted in terms of a specific instructional
context and how that data can then be used to modify the
path through the instructional material. These capabilities
are achieved both through thoughtful analysis of
simulation state data during the design of the instruction
and by mapping those data to specific instructional
content and sequencing rules. At run-time, data from the
simulation is obtained from the HLA run time interface
(RTI) and delivered back to the LMS so that it may fire
rules such as “if not mastered, remediate this objective”.
The HLA simulation proved a useful environment
because it can expose state data through the RTI in a
standardized way. Notably, the design and analysis of
data and mapping it to performance data is a non-trivial
undertaking.

Id

Type

Time

Latency

Correct_
response
pattern

Student_
response

Result

0 onRunway performance 2:50:32 PM 01:57.6 TRUE TRUE CORRECT

1 wire performance 2:50:32 PM 01:58.0 2 2 CORRECT

2 speed performance 2:50:32 PM 01:58.4 125 1 WRONG

3 flightPath performance 2:50:33 PM 01:58.9 -5 -6 CORRECT

4 missDistance performance 2:50:33 PM 01:59.3 0 -3.1 CORRECT

5 hdgError performance 2:50:34 PM 01:59.9 0 0 CORRECT

6 diveRate performance 2:50:34 PM 0:02:00 1200 1311 CORRECT

7 flapsDown performance 2:50:35 PM 0:02:01 TRUE TRUE CORRECT

8 gearDown performance 2:50:36 PM 02:01:6 TRUE TRUE CORRECT

Figure 4.3 Simulation state data obtained from the run time environment (RTI)

Figure 4.4 Mapping simulation state data to LMS data elements

4.2 Case 2: SCORM/HLA prototype

A prototype funded through the ADL Joint CoLab in
Orlando is underway to build a SCORM/HLA
demonstration that integrates instruction and simulation.
The work is being performed by the ADL Joint CoLab [4]
and Intelligent Automation, Inc. [5] in Rockville
Maryland. As of this writing, the project was still in the
design stage.

The prototype incorporates an existing simulation that
teaches Air Traffic Flow Coordinators to optimize air
traffic flow through specific control spaces. The
simulator is called the Collaborative Regional Flow
Control (CRFC) Decision Support Tool (DST). Its design
documents call for a prototype system that “elegantly
incorporates didactic instruction, performance
demonstration, guided simulation, performance-based
assessment, and written assessment into a unitary learning
experience.”

The prototype will be managed by an LMS that launches
a “simulation manager” content object (a SCO) that
initializes and launches the HLA-based simulation. The

SCO then becomes a federate of the simulation and
provides a communications link between the federates
and the LMS. The simulation includes a special client
class that passes simulation messages to the SCO. One of
these classes, called “SimAssessment”, translates the
messages from the simulation’s RTI into SCORM
performance data.

The method for mapping simulation data to LMS data is
still in development. However the early design documents
identify SCORM data elements to be used.

The prototype design includes an “RtiScoInterfaceAgent”
that receives messages containing data about the state of
the simulation. Thus there is the means to “listen in” to
the data passing through the simulation’s RTI, map
certain data states to LMS performance metrics, and
return these metrics back to the LMS.

The project is still in the design phase and the exact
method of mapping HLA RTI data to LMS performance
data has not been determined. However, the mechanics
for connecting the two environments appear very similar
to the Boeing prototype.

LMSSetValue(cmi.interactions.0.id,onRunway)
LMSSetValue(cmi.interactions.0.type,performance)
LMSSetValue(cmi.interactions.0.time,13:54:54.66)
LMSSetValue(cmi.interactions.0.latency,00:02:15.88)
LMSSetValue(cmi.interactions.0.correct_responses.0.pat
tern,true)
LMSSetValue(cmi.interactions.0.student_response,false)
LMSSetValue(cmi.interactions.0.result,wrong)

LMSSetValue(cmi.interactions.1.id,wire)
LMSSetValue(cmi.interactions.1.student_response,0)
LMSSetValue(cmi.interactions.2.id,speed)
LMSSetValue(cmi.interactions.2.correct_responses.0.pat
tern,125)
LMSSetValue(cmi.interactions.2.student_response,0)
LMSSetValue(cmi.interactions.2.result,wrong)
LMSSetValue(cmi.interactions.3.id,flightPath)
LMSSetValue(cmi.interactions.3.student_response,-4)
LMSSetValue(cmi.interactions.4.id,missDistance)
LMSSetValue(cmi.interactions.4.student_response,-
941.3)
LMSSetValue(cmi.interactions.4.result,wrong)
LMSSetValue(cmi.interactions.5.id,hdgError)
LMSSetValue(cmi.interactions.5.student_response,0)
LMSSetValue(cmi.interactions.5.result,correct)
LMSSetValue(cmi.interactions.6.id,diveRate)
LMSSetValue(cmi.interactions.6.student_response,734)
LMSSetValue(cmi.interactions.6.result,correct)
LMSSetValue(cmi.interactions.7.id,flapsDown)
LMSSetValue(cmi.interactions.7.student_response,true)
LMSSetValue(cmi.interactions.8.id,gearDown)
LMSSetValue(cmi.interactions.8.student_response,true)

Function LMS Data Model Elements Simulation Purpose
Control (start/pause/restart) cmi.suspend_data Stores location and state data of

the simulation between sim
sessions

Setup Parameters cmi.sttudent_data.
 max_time_allowed
cmi.student_data.
 Mastery_score

Can be used to indicate the
simulation termination
conditions.

Personalization parameters cmi.core.student._id
cmi.core.student_name
cmi.student_preference.
 Language
cmi.student_preference.
 audio

Can be used to personalize
simulation presentation.

Performance Data cmi.core.score.raw
cmi.core.score.max
cmi.core.score.min
cmi.objectives.n.score.raw
cmi.objectives.n.score.max
cmi.objectives.n.score.min

Native simulator performance
metrics can be stored as a list of
score elements. These could
form part of an overall
performance outcome measure.

Overall Status cmi.core.lesson_status
“passed, completed, failed,
incomplete, not attempted”

Overall simulation status could be
determined from the overall
score. This outcome could then
be used for student tracking and
sequencing.

Figure 4.5 SCORM data elements to be used in the CRFC decision support tool.

4.3 Case 3: Civil support team trainer prototype

Working with the Joint ADL Co-Lab, the Army Research,
Development and Engineering Command, and the
National Guard Bureau, Engineering & Computer
Simulations, Inc. [6] (ECS) developed a training
prototype that integrates simulation and SCORM-based
learning content. Called the Civil Support Team Trainer
(CCST), this system provides training exercises for
individuals and groups in Civil Support Teams who must
deal with weapons of mass destruction. The prototype
provides short, goal-oriented simulation scenarios with
specific training objectives.

An LMS is used to control the presentation of courseware
from four different components: web-based instruction,
virtual instruction, practice, and assessment. Web-based
instruction was developed to explain a set of skills and
how they are to be applied in a specific context. Once
students complete the instruction, they enter a team-based
simulation environment that builds proficiency for sub-
tasks that contribute in turn to overall mastery for a given
instructional objective. Assessments are gathered within
the simulation scenarios by monitoring particular
simulation state data, the results of which are returned to
the LMS as objective “satisfied” or “not satisfied.” The

LMS then determines the appropriate instructional path
based on mastery of the objective.

The simulations are created using a commercial off the
shelf 3D simulation engine called Gamebryo from
Numerical Design Limited (NDL) [7]. This engine is
used by a number of game developers and is a simulation
rendering platform that was integrated into the CCST
prototype. Gamebryo is not HLA compliant and does not
use the HLA RTI, but it has similar functionality to HLA-
based simulations. It also has toolkits and interfaces that
permit its data to be viewed and modified. The engine is
aimed at developers of commercial games. There are
many such simulation platforms/engines in the gaming
industry that can be used to develop new “worlds.” Each
have their own strengths, weaknesses, capabilities and
models. For this prototype ECS selected the Gamebryo
engine as the simulation component of the overall training
environment and then constructed “middleware” that
operates between Gamebryo and the LMS to translate the
state data of the simulation to mastery data the LMS can
then comprehend and act upon.

A key to the success of this prototype was the concept of
“chunking” simulation scenarios into a size and scope that
address particular instructional objectives. This way
simulation scenarios and instructional material can share

performance data more precisely since both the scenario
and the instruction were designed with the same objective
in mind. This approach deviates from traditional
simulators that have no overt instructional oversight or
intervention.

5. Conclusions and Observations
All three prototypes use an LMS to manage the
instruction. In other words, the LMS is “in charge”. The
LMS administers assessments, instructional content, and
then launches a SCO that initializes and launches (or
federates with) a simulation. When the simulation ends,
the LMS in all three cases receives mastery information
derived from simulation state-data. This approach of
integrating two widely different environments, each with
totally different data models (one for tracking learner
performance, and one that models the world), appears to
be a viable strategy for integrating “learning and doing”.

All three prototypes create links between the LMS and the
simulation by launching a SCO which then either
connects to (via middleware) or becomes part of a
simulation as a communications and translation bridge.
The actual translation of simulation data occurs along this
link so that each of the environments operate
independently of one another. This means that the LMS
and the simulation environments did not have to be
modified to integrate and operate together.

Each of the prototype cases use scenarios that map to
particular learning objectives. In Cases 1 and 2 (landing a
plane and ILS training), the scenario initializes special-
built simulations to create conditions that are specifically
relevant for the given instructional objectives. In Case 3
(Civil Support Team Trainer), a simulated world is
created and initialized to match the objectives. All three
cases operate similarly except that Case 3 builds scenarios
ground-up expressly to integrate with instructional
material whereas the first two cases adapt pre-existing
simulators.

All three cases report mastery information from the
simulation back to the LMS by mapping simulation state
to the LMSs data model. This process may well be the
hardest part about integrating the environments. In
Boeing’s case, for example, mapping all of the elements
of a successful landing requires keeping track of a large
number of details such as speed, flight path, flaps
position, landing gear state, etc. Designing a large
number of scenarios could become complex and since a
fair amount of time must be invested in developing
instructional strategies that use this information.

These prototypes show that HLA provides a useful
mechanism for transmitting simulation data through the
RTI. SCOs are used as intermediate agents for hiding the
complex data constructs that constitute proficiency in a
simulation from the LMS. This process suggests a more
standardized object-oriented approach might be
developed for hiding the methods of mapping but exposes
appropriate data forms to simulations and LMSs. One
might devise a standardized HLA-SCORM interface
object that could then be reused and reinitialized for each
new scenario. HLA’s RTI seems especially well suited
for building such an object through the “federation object
model” (FOM) process. This may be a good next step for
development.

The three prototypes all must initialize simulations and
save their state for later entry and use. Currently SCORM
lacks an adequate mechanism to do this. However, the
IMS Global Learning Consortium [8] may address this
issue with the Sharable State Persistence (SSP)
specification. SSP defines how an LMS can save and
retrieve blocks of data that can then be used to initialize
simulations. Best practices for implementing SSP are
expected to appear by the end of 2004.

6. Summary
These prototypes suggest that to link learning
environments to simulations, four basic components are
required: a communications link, access to simulation
state data, a map of simulation data to LMS performance
data, and simulation scenarios that can map to learning
objectives. Developing intermediate agents to aid in the
mapping seems to be an area ripe for new research.

Going further, one can imagine agents becoming more
intelligent and embedded within a simulation, intervening
and adapting seamlessly with the simulation. The lessons
learned in these prototypes lead us in this direction by
creating direct links with data that help meet proficiency
and instructional objectives. As agent technology
improves, the functionalities of an LMS may migrate
inside the simulation model and become part of it. We
might then have the agile “simulation tutors” required by
today’s operating environments.

7. References
[1] Advanced Distributed Learning Initiative:

www.adlnet.org

[2] Dodds, P. V. W. (Ed.) (2002) Sharable Courseware
Object Reference Model (SCORM) Version 1.2 (IDA
Document D-2677). Alexandria, VA: Institute for

Defense Analyses. Evolving versions of SCORM are
posted on line at http://www.idanet.org.

[3] High Level Architecture: Defense Modeling and
Simulation Office:
https://www.dmso.mil/public/transition/hla/

[4] Joint ADL CoLab (Orlando, Florida):
http://www.jointadlcolab.org/

[5] Intelligent Automation, Inc.: http://www.i-a-i.com/

[6] Engineering & Computer Simulations, Inc.:
http://ecsorl.com/

[7] Gamebryo game engine from NDL:
http://www.ndl.com/

[8] IMS Global Learning: http://www.imsglobal.org/

Author Biographies
PHILIP V. W. DODDS is a Project Analyst with Randall
House Associates, Inc., Adjunct Staff Member with the
Institute for Defense Analyses, and the Chief Architect of
the Department of Defense Advanced Distributed
Learning Initiative along with its Sharable Content Object
Reference Model.

J. D. FLETCHER is a Research Staff Member in the
Science and Technology Division of the Institute for
Defense Analyses where he specializes in manpower,
personnel, training, and human factors issues. He is the
task leader for Advanced Distributed Learning tasks.

